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Abstract

I give an introduction to “Exact Solutions for a GBM-type Stochas-
tic Volatility Model having a Stationary Distribution”, my article which
appears elsewhere in this issue.

1 A model with some nice properties

XGBM is short for “Extended Geometric Brownian Motion”. The model is de-
veloped in “Exact Solutions for a GBM-type Stochastic Volatility Model having
a Stationary Distribution”, which appears in this issue. Here I add motivation,
focusing on time series fits. The full article is more focused on option valuation.1

It’s a stochastic volatility model. If you’re new to those, first consider the
basic model for stock prices:2

dSt = µSt dt+ σSt dBt. (1)

The drift µ and volatility σ are constants; Bt is a Brownian motion process.
Stochastic volatility models generalize (1) by promoting the volatility pa-

rameter to a stochastic process: σ → σt. Typically, they also generalize the
drift. For time-homogeneous models, the result is

dSt = µ(σt)St dt+ σtSt dBt. (2)

In addition, one needs an SDE for σt, or equivalently for the instantaneous
variance rate vt = σ2

t . I take:

P-XGBM :

 dSt = (α+ β σ2
t )St dt+ σtSt dBt,

dσt = σt(ω − θ σt) dt+ ξ σt dWt,
dBt dWt = ρ dt.

(3)

where now (Bt,Wt) are two correlated Brownian motions.
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1This is the familiar P-model vs. Q-model dichotomy in finance.
2The basic model SDE (stochastic differential equation) is the Black-Scholes-Merton model

in the option context. It’s due to M.F.M. Osborne in 1959 in the time series context.
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Financial evolution models come in two versions: the P-version and the Q-
version. The P-version is the “real-world” model. Parameters are found by
time series fits, in this case (α, β, ω, θ, ξ, ρ), using exact or approximate Max-
imum Likelihood Estimation (MLE). That explains the P-XGBM in (3). For
option and other derivative securities valuation, one uses the Q-version, the
“risk-neutral model”. It’s not given here, but found in the full article.

If Xt is an arbitrary process and dXt ∼ aXt dWt, (ignoring the drift), let’s
call it “GBM-type”. The “GBM-type” in my article’s title refers to the volatility
equation (second SDE) in (3). As one sees, dσt ∼ ξσt dWt. In brief, here are
some nice properties of the model:

• It has GBM-type volatility.

• It has a stationary density, ψ(σt), for the volatility.

• The P-version has an exact solution for the bivariate transition density.

• The Q-version has an exact solution for option values.

What’s attractive about GBM-type volatility? First, you find some improve-
ment in time series fit over the competing alternative of the ’93 Heston model.
The Heston model is the “base case” stochastic volatility model: arguably, the
most important model in Quantitative Finance after the Black-Scholes-Merton
model. Indeed, in Sec. 2, I show some limited fits to the stationary volatility
density. If you want to fit all the parameters, see Sec. 4.

Dropping the drifts in (3) leaves the lognormal SABR model, well-known to
readers of this magazine (Hagan, Kumar, Lesniewski, & Woodward, 2002). All
GBM-type volatility models (including SABR) behave like “Brownian motion
on the hyperbolic plane” at small times. It seems obscure, but see Sec. 4 for
why it’s a helpful property.

2 Fitting some stationary volatility densities

Let’s fit ψ(σt) for XGBM and competing models to time series. Most popular
by far is the Heston ’93 model. Like XGBM model, it has a stationary volatility
density, and exact solutions for both the bivariate transition density (P-version)
and option values (Q-version). It does not have GBM-type volatility, but instead
the vt evolution has the well-known “square-root model” form:

Heston ’93: dvt = (ω − θ vt) dt+ ξ
√
vt dWt. (4)

You may object that we’ve switched from σt to vt = σ2
t , but if an SDE is GBM-

type under one, it will be GBM-type under the other. That follows from Itô’s
transformation rule. Thus, the fact that (4) is not GBM-type under vt means
that it certainly isn’t under σt either.

Another favorite of mine is the GARCH-diffusion model:

GARCH-diffusion: dvt = (ω − θ vt) dt+ ξ vt dWt. (5)
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This one does have GBM-type volatility, and a stationary density. Unfortu-
nately, it lacks an exact solution, although it’s certainly amenable to numerics.

Finally, consider the “3/2-model”: dvt = vt(ω − θ vt) dt+ ξ v
3/2
t dWt. That one

has a stationary density and exact solutions, but it’s not GBM-type.
Finding the various ψ(σt) is routine. Note that for the models written with

vt, you might want to first develop ψV (vt) and then make an easy change-of-
variable.

These are all 3-parameter probability densities. I report Maximum Like-
lihood Estimation (MLE) fits to a proxy series for {σt}, done previously for
my blog.3 The proxy is the (annualized) daily volatility for the S&P500 Index,
taken from the Oxford-Man Institutes’ “realized library”4. They maintain a
number of estimators for σt – I use their basic (rv5), the daily volatility esti-
mated from 5-minute log-return observations. All the data available at the time
was Jan 3, 2000 - Sept 28, 2018: 4705 volatility observations. Note rv5 does
not include volatility from the overnight move in the index. Including, say, a
squared-return for that would be a good idea for full model MLE. But we can
ignore the overnight for simple ψ(σt) compares – our only goal here.

Fig. 1 shows the volatility time series. There’s a maximum around 140%,
an annualized volatility at the height of the 2007-2008 Financial Crisis.

Fig. 2 shows the stationary density fits for the 4 models. Each figure shows
the same realized volatility histogram, overlaid with the MLE fit to the labeled
model. As it turns out, while the GARCH diffusion and the 3/2-model are
generally different, they have same functional form for ψ(σt). That’s why the
last figure is labeled ‘GARCH-3/2 model”.

For Fig. 2, I am using the annualized volatility in decimal (not %), so the
time series maximum is a histogram entry at σ ≈ 1.4. That small bump is not
really visible, but is accounted for by the fits and suggested by the axis limit.

As you can see, the visual fit is better for the XGBM model as compared to
the Heston model, with corresponding log-likelihoods: 5356 (Heston) vs. 5920
(XGBM). This suggests, but does not prove, that the XGBM model is going to
also do better than the Heston model in full MLE with joint transition densities.

As one sees, the ψ(σt) fit is even better (LL = 6055) for the the GARCH-3/2
model. Remember GARCH is also GBM-type, but the 3/2 model is not. These
last two models would be distinguished by a joint density MLE compare. There
are further cites in the main article to model compares.

Regardless of how that joint density compare might turn out, let’s recap the
modest point here: XGBM bests Heston ’93 model in a fit of ψ(σt) to our proxy.

3 Background on the model solution method

Model solutions are found by a spectral expansion method. The model is closely
related to a one-factor interest rate model of R. C. Merton’s:

3See my Oct. 8, 2018 blog entry at www.financepress.com
4https://realized.oxford-man.ox.ac.uk/
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drt = rt(ω − θ rt) dt+ ξ rt dWt. (6)

Indeed rt and XGBM’s σt have the same SDE. The solution target with interest
rates is the discount bond price B(r, t), which solves the partial differential
equation problem:

Merton’s model :

{
Bt = 1

2ξ
2r2Brr + (ωr − θr2)Br − rB,

B(r, 0) = 1,
(7)

using subscripts for partial derivatives. I gave the full (spectral method) solution
to this problem in (Lewis, 1998), so that’s key background.

For spectral expansion novices, I gave “Tips and Tricks”, mostly applying
to 1D diffusions, in Ch. 2, pg 54 of (Lewis, 2016). Some tips relevant here:

• Suppose you want to characterize the spectrum for a 1D diffusion with
generator Af = 1

2a
2(x)f ′′ + b(x)f ′ − c(x)f without actually computing it.

A cookbook:

Step 1. Create the fundamental scale, speed, and killing densities; com-
pute the Feller boundary classifications. Is each boundary either regular,
entrance, or exit? If ‘yes’, the spectrum is purely discrete, by (Elliott,
1955) and (McKean, 1956), and you are done. If not, move on to Step 2.

Step 2. Transform (A + λ)f = 0 to Liouville normal form/Schrödinger
equation form U ′′+[λ−q(x)]U = 0. Based upon that coordinate transfor-
mation and the resulting Schrödinger ‘potential’ q(x), apply ‘Oscillation
Theorems’ to characterize the spectrum (Linetsky, 2004).

• How can you know if a given problem has a spectral expansion in terms of
special functions? First, experience. Second, transformation to standard
forms. Finally, a good trick is to simply give (Mathematica’s) DSolve the
Green function ODE (A− s)u = 0. If you get an answer in terms of built-
in special functions, you’re good to go. In my experience, this is almost
always a reliable guide.

• Get used to continuous and mixed spectrum cases. Study examples in
(Lewis, 2016), (Titchmarsh, 1962), or anywhere else you can find them.

• Learn to love the confluent hypergeometric functionsM(a, b, z) and U(a, b, z).
A surprising number of solvable spectral problems reduce to solving Kum-
mer’s differential equation.

• Spectral expansions can be difficult to use at small-T . You may need a
separate small-T asymptotic solution.

4 Remarks on full model parameter fits

The ψ(σt) fits do not resolve all the parameters of (3). In particular, we’re miss-
ing β, arguably the most important because it yields the equity risk premium.
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Better would be a comparative analysis via complete MLE. By complete
MLE, I mean maximizing LL(Θ), where LL is the log-likelihood of a time series
and Θ is the full parameter set. Let’s relabel the time series {xt, yt}, where
xt = logSt and yt = σt.

Again, a good proxy for {yt} = {σt} is likely the Oxford-Man Realized
Library estimates, supplemented with an overnight volatility correction. Full
MLE requires the joint bivariate transition densities. Let’s write boldface xt =
(xt, yt); assume daily observations. Then MLE is

max
Θ

LL(Θ) = max
Θ

∑
n

log pt(x(tn+1)|x(tn)), (8)

where the dependence of the pt on Θ has been suppressed.
The joint transition density for the XGBM model is found at eqn (11) in

my article. For the Heston and 3/2-model, risk-neutral transition densities are
found in Ch. 7 of (Lewis, 2016). Those cited formulas are readily adapted to
the P-versions where the stock price drift takes the same form as in (3).

However, no closed-form pt is available for the GARCH-diffusion – instead,
use small-time expansions. Indeed, even when closed-form densities are avail-
able, you may want to adopt small-time expansions. That’s because, as we
noted above, spectral expansions can be difficult at small times. Use available
closed-forms to check on the accuracy of any putative small-time approximation.

The small-time expansion for the joint transition density of general time-
homogeneous diffusions is also known as the “heat-kernel expansion”. For two-
dimensional diffusions, it takes the form:

pt(x
′|x) =

1

2πt
e−d

2(x,x′)/2t × (a0 + a1t+ a2t
2 + · · · ). (9)

The various coefficients ai depend upon the two coordinates (x,x′) but not t.
Most importantly, in a classic result due to the probabilist S.R.S. Varadhan,
d(x,x′) has the interpretation as a geodesic distance. Specifically, its a mini-
mal distance in a geometry in which the metric is given by the inverse of the
variance-covariance matrix of the system. For the two GBM-type models we
have considered (XGBM and GARCH-diffusion), and with some standardiza-
tion, this metric can be shown to be

(ds)2 =
(dx)2 + (dy)2

y2
. (10)

That is the famous metric of the Poincaré half-plane model of hyperbolic geom-
etry. The associated distance function is explicit, and relatively simple for the
class of models we are considering:

d(x,x′) = cosh−1

(
1 +

(x− x′)2 + (y − y′)2

2yy′

)
. (11)

As a practical matter, beyond the leading terms, the HKE in (9) rapidly becomes
very difficult as written. Instead, you’ll want to employ a double power series
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expansion in which the various ai are themselves expanded in Taylor series
using powers of (x−x′) and (y− y′). This double expansion is capable of being
automated in a good symbolic algebra system, such as Mathematica. For some
details of this last approach, see (Ait-Sahalia & Kimmel, 2007).
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Figure 1: Oxford-Man daily volatility (rv5) for the S&P500 index
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Figure 2: Stationary Volatility Distribution Fits for 4 Models
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